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Nomenclature
=internal energy e=e; + Y2111
=specific internal energy
= force
=vector fluxes
= Jacobian of coordinate transformation
=molecular heat conductivity
outward normal
= pressure
= Prandtl number
=turbulent Prandtl number
=heat exchange
=heat release
=time
=temperature
= velocity components in Cartesian frame
= Cartesian coordinates
=ratio of specific heats
=eddy viscosity coefficient
=bulk viscosity coefficient
=molecular viscosity coefficient
=transformed coordinates
=density
=stress tensor
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Introduction

HE numerical simulation of gas flows achieved by solving
the compressible Navier-Stokes equations is a relatively
new discipline which emerged to meet technological re-
quirements. The basic need exists to find an alternative means

from experimental effort to establish or to supplement the
data base for aerospace vehicle design at outer limits of the
flight envelope where viscous/inviscid interactions usually
dominate the flow. Regardless of the detailed and intricate
fluid dynamics mechanisms that generate these phenomena,
they can still be adequately cataloged as either pressure or vor-
ticity interactions.! The most complicated interaction problem
associated with a full configuration is a combination of both.
Approximate numerical solutions utilizing the simplified
governing equations lose their validity because of diminishing
local accuracy or failure to completely describe the physics of
the investigated problems. Fortunately the three-dimensional,
time-dependent, compressible Navier-Stokes equations offer a
viable instrument to respond to this challenge. This set of
governing equations is the cornerstone of continuum
aerodynamics. Its range of validity covers the full spectrum of
aircraft and missile applications. Numerous methods have
been developed to solve the system of quasilinear partial dif-
ferential equations. However, in the present effort, only the
finite-difference approximations of the compressible Navier-
Stokes equations are addressed. Even with this restricted
scope, a survey of this magnitude is still prohibitive. Thus the
emphasis is further focused on three-dimensional problems.
Early research results were limited to simple configurations or
the components of a complex aerodynamic formation to
delineate the flow structure from a generic viewpoint. An
outstanding chronological record of pioneering efforts has
been compiled by Peyret and Viviand in 1975.2 More recently,
as large-scale computers have become available, a few com-
plex configuration simulations have been documented. In
spite of the painstakingly slow progress in the development of
numerical procedures and supporting data processors, signifi-
cant achievements in the three-dimensional simulation and
rapid time variation of fluid dynamics phenomena have been
obtained.>* The value of numerical Navier-Stokes simulations
has been recognized beyond the realm of research activities.
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In the area of practical application, the Navier-Stokes solu-
tions considered are either laminar flow or Reynolds-averaged
equations with a turbulence model. According to the
classification by Chapman?® on the successively refined ap-
proximation to the full Navier-Stokes equations, they belong
to the class III category. In theory, the Navier-Stokes equa-
tions really should be implemented only in the area of strong
inviscid/viscous interaction with flow separation. For a large
class of laminar free-interaction problems where the asymp-
totic theory yields detailed structure of the interacting bound-
ary layer, the application of Navier-Stokes equations is not
even necessary.>$ For turbulent flow, however, the basic
structure is vastly different and cannot be treated with
methods that are simple extensions of laminar interactions.
Thus the concept of zonal methods is a logical conclusion. The
embedded Navier-Stokes solution region was attempted in the
early 1970s by Briley.” More recent efforts were also suc-
cessful using a zonal method to obtain a composite solution
for a blunt body at high angle of attack®® and an inclined
ogive-cylinder-flare configuration.’® Significant saving in
computer time and storage was clearly illustrated. In general,
a prior knowledge of the overall flowfield structure is
necessary to achieve an efficient and accurate composite solu-
tion procedure. However, in the situation where multiple in-
teracting zones are tightly knit together or an unsteady
phenomenon arises, the advantage of the zonal approach over
the full equation solution is uncertain. For class IV problems,
turbulent eddy simulation, the direct numerical simulation
from the complete time-dependent Navier-Stokes equations
will permit no simplification. Therefore, as long as we are still
in the feasibility-study phase, the use of the Reynolds-
averaged equations is fully justified.

Applications have been extended to more and more prac-
tical problems. If, however, rapid advancement toward the
goal of using this methodology as a design tool is to be achiev-
ed, emphasis on research and development requires further
focus in specific problem areas; hence the present effort to
discuss several critical issues concerning flow simulation by
the use of the Navier-Stokes equations. A survey of the open
literature serves to summarize our past achievements and iden-
tify the need for improvement. Although a unified collection
of thoughts and ideas is not anticipated, it is hoped that a
balanced perspective of Navier-Stokes simulations will
result—and that through the discussion of these issues
research activities are stimulated in this vitally important
technology.

Finally the future outlook of the Navier-Stokes solution will
be projected based on current trends in computer architecture
development, the technical need, and the expanding applica-
tions of Navier-Stokes equations into interdisciplinary areas
of scientific interest.

Governing Equations
In the Eulerian formulation, the conservative equations in
integral form for mass, mementum, and energy with respect
to a control volume V stationary in the inertial frame and
enclosed by the control surface 4 are
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The first equation is the most fundamental principle of
Newtonian mechanics; matter can be neither created nor
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destroyed. The second equation is Newton’s second law of
motion applied to each differential element of medium within
the control volume. The body force per unit mass (accelera-
tion) is designated as f.

The second equation is also the only vector equation in the
system. For a three-dimensional problem, there are three
scalar components in the respective degrees of freedom. The
principle of conservation of energy, Eq. (3), states that the
rate of increase of energy of the medium in the control volume
is produced by the flux of energy across the control surface,
work done by external causes, and energy generated inside the
volume. Here ¢ denotes the heat exchange across the control
surface, and Q denotes the rate of energy release per unit
mass. For the situation concerning chemical reaction, Q is
simply the heat of formation of a chemical reaction.

The integral equations hold for any volume element con-
tained in the flowfield. This system of integral equations is the
foundation for the finite-volume algorithm!! and is frequently
used in checking the overall validity of approximate numerical
solutions. The equivalent differential equation is obtained by
a limiting argument in the control volume. In deriving the ap-
propriate differential equation of motion, the differential
elements of length, although regarded as negligibly small,
must be large enough to permit a molecule to encounter a
great many collisions in crossing that length. Since the control
volume is stationary, the relative order of time derivative and
volume integral may be exchanged. By means of Gauss’
divergence theorem, we have

% g -pi=0 4
o pu= 4)
dpu L _
7+V-(puu—r)—pf:0 (&)
dpe . .
W+V-(peu—u-r+q)—p(f~u+Q)=0 (6)

If the body force and the energy sink or source within the con-
trol volume are omitted and the flow medium is assumed to be
incompressible, then the classic Navier-Stokes equations are
deducible from the conservation of momentum equations.'?
However, it is now conventional to refer to the complete set of
equations of motion as the compressible Navier-Stokes equa-
tions, including Fourier’s law for heat transfer (g=—kV 7T,
where k is the molecular thermal conductivity of the flow
medium). This system of equations is not closed: there are five
equations but ten dependent variables (u, v, w, p, p, T, e, k, u,
AN). Additional equations must therefore be included to con-
nect the thermodynamic variables and to describe the propor-
tional coefficients related to the flow medium. For most aero-
dynamic applications, the equation of state and calorically
perfect gas assumption are adopted, together with specifica-
tion of Sutherland’s viscosity law, constant Prandtl number,
and zero bulk viscosity (3\= —2p), to complete the descrip-
tion of the system of equations. For laminar flow, with a set of
appropriate initial and boundary conditions, the system of dif-
ferential equations is solvable in principle. Due to the present
limitations of computing facilities, for turbulent flow, one
must be satisfied with solutions of the Reynolds-averaged
Navier-Stokes equations.

The Reynolds-averaged Navier-Stokes equations are
achieved as the ensemble average of the decomposition of
dependent variables into a macroscopic and turbulent fluctua-
tion.!* The equations are written in ensemble average and are
valid even in statistically nonstationary flows. For statistically
stationary flow, the ensemble average is equivalent to the time
average. However, the ensemble average process eliminates
several key characteristics of turbulence, for example, the fre-
quency, phase, and wavelength of the fluctuating motion.
Fortunately this information is usually not critical for most
practical applications. The mass-weight average, due to Favre,
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is based on the observation that the average mass of fluid con-
tained in a volume bounded by a surface moving with mean
mass-weighted velocity is constant.'* This observation is in
perfect accord with Laufer’s statement that the density varia-
tion has a kinematic or volumetric, rather than a dynamic, ef-
fect on the velocity field in a compressible turbulent flow."s A
careful and systematic study of the turbulent mean-flow,
Reynolds-stress, and heat-flux equations in mass-averaged
dependent variables was completed by Rubesin and Rose.!
The main conclusion pertinent to our discussion is that the
Reynolds-averaged Navier-Stokes equations are in general
identical with the laminar-flow counterparts if one accepts the
new definition of stress tensor and heat flux as

T=(—p+ NV i) + pdefii— <o’ i1’ > 0]

G=—kVvT+ <pe'ti’ > ®)

where the ensemble average, < >, produces the Reynolds
stress and the apparent heat flux. It should be noted, in the
above formulation, that the flow is no longer a Newtonian
medium, since the Stokes’ hypothesis making the stress lin-
early proportional to the rate of stress is invalid. Only the ap-
plication of the eddy viscosity concept will technically reduce
the turbulent formulation into the Newtonian.

The open literature, the Reynolds-averaged Navier-Stokes
equations are most frequently rewritten in flux vector form for
Cartesian coordinates. This coordinate system is always
adopted as the basic frame of reference for the successive co-
ordinate transformation to satisfy a particular configuration.
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The dependent variables U are easily identifiable as p, pu, and
pe. The flux vectors F, G, and H are simply the components of
the vectorial and tensorial quantities contained within the
divergence operator.
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Fig. 1 The entire flowfield of a biconic configuration (density con-

tour), Ref. 42.
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In the above formulation, the eddy viscosity (¢) and the defini-
tion of the turbulent Prandtl number (Pr,) were included. This
system of equations is identical to those for laminar flow in
structure and is probably the simplest form of the Reynolds-
averaged Navier-Stokes equations used.

For most engineering applications, Cartesian coordinates
are rarely adequate in describing the geometric configuration.
There are two reasons for this. First, an extensive interpola-
tion procedure for boundary conditions become necessary.
Second, it is difficult to implement a systematic clustering of
grid spacing.!” Thus a generalized coordinate mapping is
introduced in the form

x=xEn0, y=y&nd, z=z¢&n0

(A temporal transformation is also possible but is not included
in our discussion.) By means of the chain rule of differentia-
tion, the governing equation, Eq. (9), achieves the chain-rule
conservation form.!3
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Again, by means of a coordinate transformation identity,'®
the above equations can be rewritten in the strong conserva-
tion form?°
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The so-called conservation form in numerical analysis is
well known.?! The conservation form has a telescope effect:
The internal cancellation of differencing approximation
within a control volume is total for a given differencing ap-
proximation of a system of equations with constant coeffi-
cients.?! The relative merits of the different formulations were
studied by Hindman on a limited basis.??> For engineering ap-
plications, the difference in accuracy and numerical efficiency
is probably not critical.

The description of a differential system of equations is not
complete without the specification of initial and boundary
conditions. To achieve this objective, knowledge of the ap-
propriate classification of our governing equations is essential.
Today we know that the system of time-dependent Navier-
Stokes equations is of the incompletely parabolic type.?*?* For
infinite Reynolds number, the system of equations reduces to
quasilinear hyperbolic type. At any finite value of Reynolds
number, the system is neither elliptic nor parabolic. We will
address this subject later in our discussion.

Survey
The survey is grouped into the following categories:
1) Forebody
2) Airfoils and wings
3) Wing-fuselage
4) Afterbody and near wake
5) Propulsion system and combustion
6) Inviscid/viscous interactions
7) Time-dependent problem.

Forebody

Slender-body, blunt-body, projectile, missile-like shape,
and planetary-entry configurations are included in this sec-
tion. The problem area includes a wide variety of body forma-
tions: spinning pointed cones,?3 ogive cylinders,3!3* blunt
cones,3%¥ blunt biconics with and without flaps,**-*? general
blunt bodies,*-5! and planetary-entry configurations.’>>* The
methods of solution also use various approximations to the
Navier-Stokes equations covering a wide range.’*> The
forerunner of the recently popularized parabolized Navier-
Stokes equations was developed by Cheng®® and Davis*® for
solving the blunt-body flowfield. The basic idea is to write the
nondimensional Navier-Stokes equations in boundary confor-
mal coordinates and compare them with the same set of equa-
tions written in variables of order one in the inviscid region.
The final composite set of equations is thus uniformly valid
for the entire shock layer up to second-order accuracy in terms
of the inverse square root of the characteristic Reynolds
number.?> On the other hand, the thin-layer approximation
evolved from a realistic assessment based on experience and
insight due to Baldwin and Lomax.>’ The thin-layer approx-
imation neglects only the diffusion processes parallel to the
body surface which the usually highly stretched mesh parallel
to the surface simply cannot resolve. A study of the Navier-
Stokes solution and the thin-layer approximation was carried
out by Degani and Steger for a two-dimensional flow over a
compression ramp.*® They have found small differences be-
tween the numerical results, the discrepancies being minor and
confined within the separated flow region. More importantly,
in a controlled study for the time-dependent condition, the
disparity between the solutions is mainly due to phase shift.
Even though this simple configuration poses a serious test for
the thin-layer approximation, caution must be exercised in
drawing a general conclusion from a single numerical result.

The rigorous mathematical structure of the parabolized
Navier-Stokes equations, particularly for the laminar flow, is
contained in the framework of the interacting boundary-layer
theory. The triple-deck theory by Stewartson and others®®
describes clearly the hierarchy of increasing accuracy of ap-
proximations to the Navier-Stokes equations. This specializa-
tion can be obtained by neglecting the temporal derivatives
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and the streamwise diffusion within the Navier-Stokes equa-
tions, as well as modifying the streamwise convective flux vec-
tor to permit the marching of the equations downstream from
initial data.* Significant computational efficiency and
reduced data storage requirements are realized. This
simplification, however, should always be applied in conjunc-
tion with a boundary conformal coordinate system to gain the
maximum advantage. The well-known, ill-posed problem
leading to the departure solution and numerical instability
under certain flow conditions seems to be controlled by either
global iteration or some special numerical procedure.**»5 This
simplified approximation has proved very useful in engineer-
ing applications.

The conical approximation has also been applied to the
forebody problem to produce a more efficient numerical pro-
cedure for pointed-nose configurations. The comical flow
structure is maintained by insisting upon the invariance of all
flow properties along a generating ray including the body sur-
face considered. For the conical approximation, the intrinsic
coordinates are the classical spherical system in that conical in-
variance requires all the derivatives in the radial direction
simply to vanish. In principle, the conical approximation is
not able to satisfy the scaling law of the shear-layer growth
from its apex. Thus the conical approximation has an inherent
deficiency. This discrepancy from physics should be more
serious for laminar flows than turbulent flows because of the
degree of deviation from the conical structure. However, a
detailed study comparing numerical results with . flight and
wind tunnel data seems to demonstrate that this approxima-
tion is a viable and efficient procedure for slender-body prob-
lems.”® In summary for the forebody problem, the current
trend is wide usage of the thin-layer and parabolized pro-
cedure. The full Navier-Stokes equations were used in early
research efforts?-3¢ and for a specific study on the vortical
pattern at high incidence3!-¥2 or for a comparative purpose.
The shock-fitting procedure advocated by Moretti®® is most
frequently used as an alternative in generating accurately the
necessary initial data.

As an illustration, the entire flowfield of a biconic missile-
like configuration is given in Fig. 1. The bow shock, the
embedded flap-induced shock waves, and the rapid expan-
sions around joint and slices are faithfully reproduced by the
Navier-Stokes equations. The detailed pitot pressure profiles
on the forebody and the afterbody flap also showed excellent
agreement with data®' (see Fig. 2). This accuracy can be
achieved only if the forebody calculation is accurate.

Novel applications of the Navier-Stokes equations and their
approximation also extended to spinning bodies with and
without%* coning motion.% In these related studies, the
primary objectives were the resolution of the Magnus force
and moment. The consensus points out that the contribution
to the Magnus force is equally important among the cross-
flow shear, centrifugal force, and displacement interaction
effect. Thus, resolution of the viscous/inviscid interaction is
critical in order to have any meaningful results for the net
Magnus force.

Airfoils and Wings

A major group of the two-dimensional Navier-Stokes solu-
tions in the open literature is devoted to the transonic airfoil
problem.%30 It is also a naturally self-contained component
problem in aircraft applications. The flowfield usually con-
sists of a leading edge, trailing edge, and possibly the coalesc-
ing shock waves in the separated flow region over the chord of
the airfoil. In order to complete the description of the physical
phenomenon, the near and far wake regions are also included.
In essence, the airfoil problem is a microcosm of most of the
difficulties in numerical simulation one would encounter for
the full-scale aircraft investigation. In the early phase of ex-
ploratory research in this subject area, an 18% thick biconvex
airfoil was adopted for both the numerical simulation and ex-
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perimental validation.®% Deiwert’s work on this airfoil was
probably the first effort to use the conservation equation in in-
tegral form.% Next, Levy initiated the exploratory investiga-
tion of the buffet range of an airfoil,*® and obtained the first
time-dependent Navier-Stokes solution for the transonic air-
foil. Soon afterward, Steger and Bailey, investigating the tran-
sonic aileron buzz problem,”® found that the inviscid unsteady
shock-wave motion is the driving force in transonic aileron
buzz. However, the viscous effect is critical and can both sus-
tain and moderate the flap motion. For some conditions,
viscous effects even change the frequency and amplitude of
the aileron motion. In the same vein, Chyu et al.” conducted
a comparative study on a NACA 64A010 airfoil oscillation in
pitch. Their results seem to indicate that both the inviscid and
the thin-layer approximations are in good agreement with ex-
perimental data, but the viscous-flow computation is more ac-
curate in predicting air loads in terms of lift and pitching mo-
ment coefficients. Little or no information on drag coeffi-
cients was documented. Recently a comparative study on
finite-difference and integral-differential techniques was con-
ducted by El-Refaee.”® He found little difference between the
two approaches in computer resources used and numerical re-
sults obtained at a relatively low Reynolds number of 1000.78

In this area of research,® % several issues on numerical
simulations emerged concerning the uncertainty of numerical
resolution,” particularly near the trailing edge of an airfoil
where the turbulent structure undergoes an abrupt change and
the selection and placement of boundary conditions for the
mixed characteristic flowfield are unclear.-%2 A series of in-
vestigations was designed to isolate these uncertainties.3-8
These research efforts seem to indicate that higher-order
closure turbulence models yielded slightly better predictions
for the turbulent properties, but a better turbulence model is
still needed. It was also determined that the accuracy of results
was highly dependent on the degree of numerical resolution of
the strong leading- and trailing-edge gradient. Several related
research efforts also reflected similar observations.?-%

There are only a few solutions of three-dimensional wings
known at present. Usually the solving schemes are approx-
imate procedures to the full Navier-Stokes equations whether
in the conical or parabolized form. Bluford®' and Vigneron et
al.” used the conical approximation to solve delta-wing prob-
lems. The shock-induced vortex development above the
boundary-layer development was captured and compared
favorably with experimental data. The slab delta wing at high
angle of attack and hypersonic Mach numbers was simulated
by Tannehill et al.”* with the parabolized Navier-Stokes equa-
tions. Their paper also presents an excellent discussion of the
departure solution and the treatment of the streamwise
pressure gradient. Recently numerical simulations of blunted
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delta-wing and strake delta-wing configurations were obtained
by'Fujii and Kutler with the thin-layer approximation.® A
finite wing (ONERAMS6) at transonic Mach number and

Reyn;)lds number of 1000 was also completed by Hollanders
et al.”

Wing-Fuselage

The wing-fuselage problem has a more complex flowfield
structure than the finite wing in that additional strong in-
viscid/viscous interaction also occurs in the wing root region.
The interference effect in wing-body junctures is a well-known
phenomenon in aircraft®® and missile aerodynamics.®”-°¢ Only
a few numerical simulations of this configuration are
documented.33:%9-10L103 For a relatively complex formation,
the memory limitations of today’s computers severely restrict
the number of discrete nodes that can be accommodated for
the calculations. Thus, the choice of coordinate system for a
given problem is critical.’®®%!% In the computation of an
ogive forebody and sharp leading-edge delta-wing combina-
tion, a cut along the wing surface is essential in obtaining
results comparable to that of experiments at a moderate angle
of attack.!® The flowfield is shown in terms of selected den-
sity contours at streamwise stations and the oil film patterns
on the surface of the wing-body configuration in Figs. 3 and 4.
A highly blended forebody-wing configuration and twin-jet
afterbody nozzle geometry was simulated by Mace and
Cosner.*»!%! The adopted velocity-splitting method'®? in the
analysis provides an efficient means of solving the three-
dimensional viscous flowfield in subsonic and transonic
regions. The flowfield about a finned projectile and missile
was accomplished by Rai et al.!®® using the parabolized
Navier-Stokes equations. The numerical solution by means of
the Navier-Stokes equations was also implemented for the
region in which the fins began to protrude in ascertaining the
approximate solution. The numerical results obtained for the
force coefficients of the finned projectile were found to be in
agreement with experimental values.

Afterbody and Near Wake

In this section of discussion, the afterbodies associated with
wake and jet plumes are included. The flowfield is usually
characterized by an expansion followed by a recompression in
the near wake domain. In the case of jet exhaust, a reflective
shock-wave system or a single Mach disk structure may result,
depending upon the pressure ratio across the jet stream and
the ambient condition. Several two-dimensional and axisym-
metrical configurations were simulated by solving the full
Navier-Stokes equations and their simplified approxima-
tion.!%110 A few three-dimensional flowfields past afterbody
and exhaust plumes were also computed successfully, 1114 by
Deiwert and Vatsa et al. The common problems encountered
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Fig. 3 Density contour around a wing-fuselage configuration, Ref.
100.
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in numerical simulations are the solution of an appropriate
turbulence model for describing the abrupt flow structure
change and its impact on turbulent properties. A unique
problem of the afterbody simulation is that the accuracy of the
result depends on upstream boundary conditions. A relaxation
turbulence model!>!1¢ was implemented for the near wake
study.'® It was found that the upstream flow history has a
profound influence in the subsequent near and far wake
region. In spite of the aforementioned concerns, Hasen’s work
on axisymmetric nozzles clearly demonstrated that the Mach
disk reflection is recoverable by the full Navier-Stokes equa-
tions.!%® A parabolized Navier-Stokes equation set was also
successfully applied in solving a two-dimensional and axisym-
metric coflowing jet'®” and three-dimensional exhaust
plumes.''? The novel and efficient procedure is based upon a
set of composite equations written in an approximation intrin-
sic coordinate system. !\’

A series of three-dimensional boattail afterbodies with and
without a centered propulsion jet was computed by
Deiwert. !!1.113.114 Hig work probably reflects the achievement
in the three-dimensional numerical analysis of the afterbody
problem by using a thin-layer approximation. Valuable infor-
mation can be obtained from his effort. First, in using a large
array processor, a carefully structured data base is critical in
reducing unnecessary data movement and thus the overall ex-
penditure in data processing of a complex configuration. Sec-
ond, the influence of grid point distribution requires atten-
tion. Deiwert has shown that the clustered mesh spacing in the
sharp forebody-afterbody junction significantly improved
comparison with experiment,!11,118

Propulsion System and Combustion

Inlets, diffusers, ducts, laser systems, and combustion
propulsion systems are contained in the following
discussion.!’*133 For supersonic inlets, the strong in-
viscid/viscous interaction with a multiple shock-wave system
is predominant. In particular, the interaction between the
shock generated by the inlet cowl lip and the inlet ramp bound-
ary layer triggers a complex reflective wave system in an at-
tempt to achieve wave cancellation. The shock-wave system is
usually terminated near the inlet throat by an approximately
normal shock. Knight initiated a series of two-dimensional
studies in this problem area.!!*121.123 He is probably among
the first to incorporate a general grid generation capability
with existing algorithms for solution of the Navier-Stokes
equations.!'” In this connection, Thompson’s elliptic grid
generation procedure!?* was used successfully in a strong con-
servation form. Knight also developed an efficient explicit-
implicit procedure for the two- and three-dimensional super-
sonic inlet problem.!?>1%6 His numerical results with an eddy
viscosity model generally agree with experimental data.
However, attention is also drawn toward further development
of the turbulence model for multiple-shock-wave/boundary-
layer interaction with mass exchange on walls.!26 The
parabolized Navier-Stokes approach has also been used for
the analysis of high-speed inlets and diffusers. The efforts of
McDonald and Briley!?-1? leading to success in the high-
speed inlet problem are also noted.!3%13% Of particular interest
in this area of research is the significant role played by the
numerical resolution and the shock-capturing technique. !31-136
The issue of appropriately posed boundary conditions for sub-
sonic and mixed-type problems which frequently occurs in in-
ternal flows continues to be a serious problem.

The duct and diffuser problems have also attracted much
research activity.'?”'% The flowfield structure can be made
more amiable by using the parabolized Navier-Stokes
equations.’¥1%® The boundary conditions for the subsonic
problem, however, still offer a formidable challenge.!41-143
The work of Yee, Beam, and Warming has assured us at least
that stability analysis can provide a rigorous guide to the treat-
ment of numerical boundary conditions for a hyperbolic
system of equations.!**!* For the incompletely parabolic

J. AIRCRAFT

system of equations, one can only produce a strong estimate,
Moretti’s general concept in specifying physical conditions at
infinity for subsonic flows probably should be adhered to.!4
The work of Buggeln et al. in a strongly curved three-dimen-
sional rectangular duct with physical boundary and initial con-
ditions yields the physical structure of the flow correctly.!46
The difficulty of implementing boundary conditions for these
internal flows is compensated for by the much better
understanding of turbulence. The works of Deardorff and
others!4714 are illustrative.

The Navier-Stokes equations were also used in the combus-
tion propulsion system by Kumar!*® and Drummond and
Weidner.'5%15! Novel solutions have been obtained for an
internal-combustion engine,'’? and a chemical laser
system.'*355 These research efforts reveal a rapidly growing
interdisciplinary thrust of computational aerodynamics in
conjunction with chemical kinetics.!56-159

Inviscid/Viscous Interactions

While solving the inviscid/viscous-interaction problem by
using the Navier-Stokes equations is the cornerstone of fluid
dynamic research, it is also the building block of all the
previous discussions. In the pioneering phase of solving this
system of equations, the investigated configurations included
the following: cavity, 1% shock tube,!6! blunt body,!62164 base
flows, 65166 leading edge of a plate,'? corner,'s’ compression
ramp,'® and shock impingement.!%%170 Several excellent
reviews>!7"173 are very good sources for readers interested in
the early development. The work of MacCormack signifi-
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cantly impacts current activities in solving the Reynolds-
averaged Navier-Stokes equations. His efforts in algorithm
development!™176 set the standard for the most active area of
numerical research. Most importantly, from the beginning his
explicit method has been the necessary tool in solving complex
and numerically demanding interacting problems. The
meticulous research of Carter'® also bears the mark of
distinction in revealing the link between asymptotic theory
and numerical solutions. It would be beyond the present scope
of this effort to detail interacting boundary-layer theory, but a
good collection of numerical solutions based upon the triple-
deck theory can be found in the work of Napolitano et al.!”’
Only shock impingement, compression ramps, corner flow,
and the flowfield around a blunt fin are discussed here. To
avoid repetition of early documentation,?!7""173 our discussion
is focused on more recent efforts. Tannehill, Rakich, and
others studied two-dimensional turbulent, blunt-body flows
with an impinging shock wave.!”®!”® These efforts demon-
strated that the irregular-shaped bow shock can be treated as a
discontinuity by shock-fitting. Also, the implicit numerical
methods, 8182 although requiring roughly 1.8 times more
computing resources per time step, permitted significant sav-
ing in total computing time to complete a given problem
because of their favorable stability restriction. The three-
dimensional counterpart of the shock-wave impingement
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Fig. 6 Influence of grid distribution on afterbody pressure distribu-
tion, Ref. 111 (Courtesy of G. S. Deiwert).
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problem was solved by Holst.!®? The three-dimensional shock
wave impinging on a boundary layer developed internal to a
tube (Kussoy et al.'®*) and on a body of revolution (Brosh et
al.'®) was studied side by side with experimental efforts, and
reasonable agreement was reached with the accompanying
data (Fig. 9). A jet impingement problem relevant to vertical
takeoff and landing aircraft design was conducted by Agarwal
and Bower!® with a two-equation turbulence model.'” They
prefer the use of the higher-order closure model for tur-
bulence. However, no specific comparison was presented in
this work.

The inviscid/viscous interactions over a compression ramp
at supersonic and hypersonic Mach number were continuously
studied and compared with experiments!®-1% (Fig. 10). The
numerical results generated by the simple flux-gradient con-
cept gave reasonable agreement with experiments for the loca-
tion of separation and the overall pressure rise. Significant
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Fig. 9 Comparison of surface shear distributions on a body of
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Hung).
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discrepancies occur only in the separated flow and particularly
in the reattachment region.!?%-192 The higher-order closure for
turbulence!?1% seems to provide a slightly better prediction.
The consensus also favors the turbulence model by Wilcox and
Rubesin.!®”-1% The contributions by Horstman, Settles,
Bogdonoff, Viegas, Coakley, and Rubesin in this series of
studies are significant. They have also isolated the cause of
disparity in numerical prediction, turbulence models, and the
area of improvement needed. The requirement for turbulence
model refinement is obvious but, significantly, the essential
features of the physical phenomenon were predicted adequate-
ly by the numerical analysis. The three-dimensional flows
around the flared juncture of an inclined body of revolution
was investigated by Hung and Chaussee. Hung solved the
thin-layer approximation equation for the laminar flow
case.?® In his analysis the flare can be viewed as an axisym-
metric compression ramp encountering the oncoming stream
with incidence. The numerical results show good agreement
with experimental measurements of surface pressure and nor-
mal force distribution (Fig. 11). He also demonstrated that the
circumferential communication through the cross flow plays
an important role in the three-dimensional shock-
wave/boundary-layer interaction. As a natural extension, a
turbulent case was considered under a composite solution pro-
cedure including the full Navier-Stokes equations, the thin-
layer, and the parabolized approximation.'® They demon-
strated that the thin-layer approximation yielded comparable
accuracy (4%) and significant reduction in computer resources
(25%) to that of the full Navier-Stokes equations.'%2% Im-
pressive numerical efficiency is also exhibited by the parabolic
approximation. Again, the deficiency of the turbulence model
in the leeward flowfield prediction was reported.

Corner flow is one of the most complex three-dimensional
inviscid/viscous interacting phenomena.?-22 In the absence
of shock waves, the numerical solutions based on the method
of matched asymptotic expansion were obtained by Ghia and
Davis,2® and Mikhail and Ghia.?** A numerical study was
also performed by Li.?%® The flowfield becomes very complex
when the shock-wave system is generated either by the
geometric configuration or the growth of a boundary layer.
Frequently a triple point will form in the region where waves
intersect each other.2%%:207 The turbulence described by a sim-
ple algebraic model with an appropriate-length scale yields
correctly the shortening scale in the interacting zone (see Fig.
12). Hung, MacCormack, and Horstman22!! also studied
corner-flow problems characterized by an overwhelming
single shock-wave system over the corner region. They not on-
ly demonstrated the improved numerical efficiency but also
the accuracy of the thin-layer approximation. Regardless of
the detailed mechanism from which the cross flow was
created, 212213 the high heat-transfer rate adjacent to the corner
is always associated with the thinning of the wall shear layer.
A flowfield external to an axial corner was also investigated by
Katler, Pulliam, and Vigneron.?!*

Another group of inviscid/viscous interacting problems,
those involving a blunt fin mounted on a plate, has attracted
intensive investigation for the primary horseshoe and secon-
dary vortex structure.!’2!3216 The numerical solution!!-2!6
showed that indeed it can effectively supplement the ex-
perimental effort for aerodynamic design as well as for the
understanding of basic fluid dynamics phenomenon. Addi-
tional information regarding three-dimensional separated
flow and validation data of inviscid/viscous interaction can be
found in the works of Tobak and Peake?!” and Kline et al.,?'8
respectively.

Time-Dependent Problem

Our fascination with the unsteady aerodynamics problem is
more than natural curiosity. The majority of engineering
problems to be solved are unsteady, as once the flowfield
becomes turbulent it is by definition a time-dependent
phenomenon.?" Since our current computing facilities simply
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cannot process data in the Kolmogrov scales,?? the class of
problems we hope to simulate is restricted to flow containing
organized motion. Unfortunately it is impossible, for this class
of problems, to distinguish whether the organized periodic
motion is superimposed on a background of turbulence or,
perhaps more accurately, vice versa.??! In the numerical
simulation of the unsteady problem with the Reynolds-
averaged equations, the ambiguity of implementing a tur-
bulence model at high oscillating frequencies is still an
unresolved question; the classic problem encountered in tur-
bulence research is trying to understand energy spectra and ex-
plaining why most of the energy contribution comes from the
low wave number components of the fluctuating motion.??!
While this issue is still open to question, persistent numerical
studies, together with long-term fundamental research efforts,
may eventually provide some much-needed understanding.
The pioneering research efforts to duplicate the von
Karman vortex street by Payne,?? Fromm,??* and others?24-226
are very well known. Continual efforts??’22° are still being
undertaken to better understand this fundamental fluid
dynamics phenomenon. The unsteady airfoil problem?® and
related aileron buzzing problem are also being investigated.
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Fig. 10 Supersonic flow over a compression ramp.
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The early numerical results obtained by Levy®® and by Steger
and Bailey” have been discussed previously and will not be
repeated here. In engineering applications, the free-shear-layer
impingement type of self-sustained oscillatory flow?*-233 is the
most frequently encountered. This type of oscillatory fluid
motion must have a feedback mechanism to complete the
chain of events. First, the free-shear-layer instability selectively
amplifies disturbances within a certain range of frequencies;
then the free shear layer impinges on a surface, and the distur-
bance is reintroduced into the system. The feedback
mechanism usually presents itself in the form of a pressure
pulse and propagates upstream through the subsonic portion
of the flowfield. The pressure oscillation in an open cavity?3*
and the spike-tipped or indented nosetips problems?35-238
belong to this group. The numerical results by Shang,
Hankey, and Smith compared favorably with experimental
data not only in predicted frequency and amplitude but also in
the detailed waveform?® (see Fig. 13).

Oscillatory flow in the form of inlet buzz,?*0 unsteady tran-
sonic flow in a diffuser?*! and combustor?® have been suc-
cessfully simulated by the time-dependent Navier-Stokes equa-
tions. An interesting application was extended to a three-
dimensional turret problem?? and its wake structure con-
trolled by mass suction.?** Of particular interest is that the
comparison of rms density fluctuation across the shear layer
with experimental results reveals a general agreement using
only a simple algebraic turbulence model, while the highest
numerically resolvable frequency is around 6 kHz. Hankey’s
contribution in developing a better understanding of self-
sustained oscillatory fluid motion is invaluable,.?32:234.238
Numerical study of the hydrodynamic instability leading to
transition was also conducted by using the incompressible
Navier-Stokes equations?*2*¢ and their compressible counter-
parts.?*’ For the compressible simulation, in spite of uncer-
tainty in numerical resolution and the imposition of ap-
propriate boundary conditions, the predicted discrete frequen-
cies at various streamwise locations seem to indicate a clear
agreement with experimental observation. It is clear that addi-
tional efforts are required to ascertain numerical simulations
in this research area. The reviewer feels that the domain of
direct calculation of turbulence through large eddy simulation
is critically important for the long-term understanding of tur-
bulence. It is also a highly specialized area of research and is
considered to be outside the scope of discussion. However,
several current state-of-the-art review articles by Leonard,
Ashurst, and Morchoisne are included.248-250

Assessments

The following assessments on numerical simulation address
the areas of emphasis for further growth.

Efficiency and Accuracy of Numerical Procedures

Since 1960%2! numerous finite-difference algorithms have
been developed for solving the compressible Navier-Stokes
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Fig. 12 Comparison of turbulent and laminar corner flows, Ref. 207.
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equations. Today, however, in the open literature the most
frequently used algorithms for solving this system of equa-
tions can be identified as MacCormack’s algorithms, 17476
Beam and Warming’s approximate factorization scheme,!82
Briley and McDonald’s procedure,!?®!8! and several hybrid
methods. 2525122 There are also some more recent develop-
ments.2’3-2¢ The multigrid technique?’’ and spectral
methods?*®2% have also been introduced into the area of solv-
ing the Navier-Stokes equations.?® The multigrid technique is
basically a numerical procedure which systematically sup-
presses the short wave components of numerical error
residuals by using varying mesh systems, thus enhancing the
rate of iterative convergence. The fundamental requirement is
to condition the matrix structure of the governing equations
and to transfer the solution smoothly from one grid-point
system to the other. The potential acceleration of convergence
by the use of multigrid is obvious. Some success in practical
applications has been reported by Chima and Johnson?%! and
Davis.?®? The use of spectral methods is based on the fact that
for a smoothly varying function, the series approximation,
either by the Fourier or Chebschev series, gives accuracy for
derivatives far superior to the common finite-difference pro-
cedure. For a given accuracy criterion the spectral method
would require fewer grid points than would finite-differencing
methods. However, to develop this concept for practical ap-
plication, substantial efforts are still needed.?46:262265 At pres-
ent we have too small a data base to make a resonable assess-
ment of its efficiency and accuracy in solving the compressible
Navier-Stokes equations.

For the most common finite-differencing algorithms several
general statements may be given. In general, the implicit pro-
cedure requires more arithmetic operations per time step than
its explicit counterpart. However, the more favorable stability
characteristics and a potentially faster convergence rate of the
implicit procedure more than compensates for the overhead in
the matrix inversion process to yield a substantial saving in
computing resources. Unfortunately a general index cannot be
easily established because the specific comparison is always
problem-dependent as well as dependent on the accuracy re-
quirement. Finally, the most stringent accuracy evolution of
numerical solutions using the scaling law of the triple-deck
theory was accomplished by Hussaini et al.2%6 In theory, the
scientific precision is achievable with the aforementioned
numerical procedures.

The hybrid procedures were developed from the observation
that in most solutions the aspect ratio of grid spacings among
the streamwise, peripheral, and normal directions is substan-
tial, due to the highly stretched mesh distribution normal to
the surface. Over the computational domain it is not unusual
to observe the CFL time-step size spanning a range of several
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decades. One group of hybrid procedures alleviates the stabili-
ty constraint by implementing an implicit subdomain within
the framework of an explicit scheme. 2517251 Another class of
hybrid procedures is aimed at eliminating the implicit opera-
tion in the directions in which the favorable stability property
of the differencing operator is no longer advanta-
geous.??These hybrid numerical procedures have demon-
strated high numerical efficiency.

Other procedures intended to improve computational effi-
ciency can be identified as convergence-enhancement,
specialization, higher-accuracy, and computer-adapted pro-
cedures. The multigrid procedure, spectral method, and local
time-step method belong to the first group. The spectral
method, particularly the collocation approach, can bring
boundary values into the field instantaneously. For this reason
alone, it can be considered a device of convergence enhance-
ment. However, the pseudospectral approximation in a three-
dimensional calculation indicates a better accuracy than a
fourth-order finite-difference approximation.?®’ The local
time-step procedure is really the simplest convergence
enhancement for problems with an asymptotic steady state.
The distorted time-step procedure simply satisfies the stability
condition at each point individually. The solution therefore
progresses at different temporal rates at each point toward the
asymptote. This procedure was first used by Li for a three-
dimensional Navier-Stokes calculation.’® Typically an in-
crease of two to five times in convergence to a steady-state
problem is indicated. "

Specialization plays a significant role in reducing computing
resources by utilizing simplified governing equations and
zonal methods. The former is reflected in work on thin-layer
approximation®” and the parabolized equations.** While both
methods reduce the computational resources required, the
parabolized procedure is a space-marching method, addi-
tionally saving substantial computer storage. However, the
zonal method used in an attempt to produce a sophisticated
far-field boundary condition has met with no outstanding suc-
cess as yet. The problem of determining the criterion of equa-
tion switching and the compatibility of the interphase condi-
tion remains unresolved.

In the area of higher-order accuracy reside the tradi-
tional higher-order procedures®>326%; spectral, higher-order
spline, 29270 and adaptive-grid methods.?’’:?’? For the adapt-
ive-grid method, the fundamental idea is to redistribute grid
points in the region of high gradient, thus reducing the large
local truncation error. The accuracy improvement is offset,
however, by additional calculation and interrogation expen-
diture. For very large-scale calculations, the coordinate
transformation derivatives or the direction cosines of the con-
trol surface are usually selectively computed as the need arises
to avoid large storage space. Thus, the repetitive update of the
grid-point system is not an overly restrictive constraint.
However, the implementation of this procedure and the op-
timal criterion of adaptation still needs additional research
effort.

Computer adaptation is probably a major factor in recent
advancement in improving computing efficiency. Code
preparation requires the programmer to know much more
about the computer architecture and its particular
characteristics. It is not unusual to achieve an order of
magnitude or more increase in data-processing rate between a
hizgh-speed scalar computer and a class VI vector processor
with a theoretical calculation rate of 50 to 80 million floating
point operations per second (FLOPS).?”>?™ For an explicit
algorithm, vectorization is achieved by simply insisting on a
better program and close attention to the data structure.
However, for an implicit method, due to the recursive relation
in the matrix inversion operation, vectorization is inhibited
(backscatter uncertainty). A new way of matrix solving is re-
quired. Pulliam and Lomax*® and Benek et al.?’5 overcame
this difficulty and successfully vectorized a three-dimensional
code based upon the Beam-Warming algorithm.
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From the previous discussion, a trend in algorithm develop-
ment is clearly revealed. The process is laboriously evolutional
after the initial conceptual breakthrough. The algorithm and
numerical procedure will remain a major focal point of
research activity in computational fluid dynamics. Then a
natural selection process will take place, in which the most
widely used numerical procedure will be the one that yields ac-
curate results and has rapid convergence characteristics, ease
of programming, and reliability.

Well-Posed and Stable Boundary Conditions

There is no rigorous mathematical theorem concerning the
proper initial and boundary conditions to ensure existence and
uniqueness of the solution®’ to the Navier-Stokes equations.
However, our experience in solving this system of equations
tells us to impose the condition that takes into account the
physical meaning of the problem and the mathematical nature
of the system of equations. This physical requirement of a
mathematical formulation is referred to as the well-posed
problem.'”" A well-posed problem can be achieved only if the
boundary conditions are properly specified. The solutions of
the differential equation then vary continuously with respect
to perturbations of the initial and boundary conditions. Suc-
cessful numerical solutions must also possess this property,
namely, that slight perturbation of the initial and boundary
conditions yield a correspondingly small perturbation of the
numerical result.

In order to develop a well-posed problem, a definition of
the type of partial differential equation being considered is
essential. Unfortunately our knowledge of classification of
coupled, partial differential equations is very limited. Even for
a partial differential equation of second order with more than
two independent variables, it is not always possible to reduce
the equation to a simple canonical form.?’”” More recent
research efforts by Belov and Yanenko,? Strikwerda,?* and
Gustafasson and Sundstrom,? have identified the time-
dependent Navier-Stokes equations as being of the in-
completely parabolic type. For certain, in the asymptotic limit
of Reynolds number approaching infinity, the time-dependent
Navier-Stokes equations reduce to a quasilinear hyperbolic
system. For any finite value of Reynolds number, the system is
no longer hyperbolic, but neither is it elliptic or parabolic.

The incompletely parabolic system of partial differential
equations is basically a mixed initial boundary value problem.
Some limited general results of the well-posedness conditions
for incompletely parabolic systems were derived from classical
energy methods.? In this mode of analysis, the system is im-
properly posed if there are eigensolutions that grow at an ar-
bitrarily large rate and are thus unbounded. From these
analyses, one may only conclude that for most aerodynamic
problems there are no unique boundary conditions known in
advance except for flow within solid wall boundaries, where
the boundedness of the energy norm is always satisfied.?> In
addition, the proper number of independent boundary condi-
tions is uniquely determined by the rank of the coefficient
matrix of the partial differential equations and the number of
negative eigenvalues of the diagonalized matrix.

In the numerical analysis, the implementation of stable
numerical boundary conditions is also a major issue and one
that is not completely resolved.!#414> The problem arises from
a computational domain that is bounded in space and in time.
It is common practice to introduce artificial boundaries?! to fit
the investigated problem into the limited memory of the com-
puter. It is also well known that most finite-difference
methods need more boundary conditions than the differential
equations. For a stable and accurate numerical algorithm im-
proper implementation of boundary conditions (either
analytical or numerical) can lead to instability and inaccuracy.
Thus, the construction of stable and convenient conditions at
artificial boundaries becomes critical. Unfortunately this is a
difficult area of research, as defining and obtaining stability
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bounds is hindered by mathematical and conceptual
complexities.

In spite of formidable obstacles, wide-ranging numerical
solutions of the Navier-Stokes equations have been obtained.
These results usually compare favorably with the accompany-
ing experimental observations. This criterion of validation is
fully justified based upon the fact that the Navier-Stokes
equations were developed to describe physical phenomena. In
engineering applications, these results yield insight and
understanding unattainable by other means. To date, we can
compute the Reynolds-averaged Navier-Stokes equations
routinely in the supersonic domain for both the time-
dependent and steady-state problems.

In subsonic numerical simulations, no clear pattern of suc-
cess is apparent. As an example, for the simulation of sub-
sonic flow over a cylinder at a nominal Mach number of 0.5,
three different sets of boundary conditions were used in the
far field: the extrapolation condition, the condition derived
from the characteristic variables,?”® and the Strikwerda type
of no-reflection condition.?” The pressure distributions along
the axis of symmetry of the cylinder exhibit indifferent
behavior with respect to the different boundary conditions
and the placement of the boundary. The trapped wave
behavior is obvious on the surface pressure distribution, and
no repeatable pressure wave pattern is achieved over an exten-
sive period of time. However, the extrapolation condition and
overspecified boundary conditions were successfully applied
to a three-dimensional turret problem.?*324 The only plausi-
ble explanation that can be offered is that the three-
dimensional relief effect permits the overspecification of
boundary conditions. For internal flow problems such as in-
lets and diffusers, the notable successes in specification of
boundary conditions have been a combination of physical
conditions and extrapolation.!3® Usually this includes the
description of the stagnation pressure and temperature at the
entrance and the static pressure at the exit, while the rest of the
boundary conditions are defined by extrapolation.

In the transonic flow regime, numerous Navier-Stokes solu-
tions for flow over airfoil have been obtained. The flowfield
structure is characterized by a relatively small perturbation.
Even though there is no rigorous study of the decay rate of this
disturbance, the far-field boundary is typically placed several
chords away from the source of the perturbation. The bound-
ary conditions were a mixed group of physical and extrapola-
tion conditions. In this class of problems, the range of eigen-
values is widely scattered, and the studied phenomenon is fre-
quently time-dependent.%70:74.73.79.82 Again, as in the subsonic
numerical simulation, the data base of successful specification
of far-field boundary conditions for the Navier-Stokes equa-
tions is rather limited.

It is evident that the ability to establish a well-posed and
stable boundary condition for solving the Navier-Stokes equa-
tions is paramount. A physically meaningful solution must
have realistic physical boundary conditions implemented in an
unambiguous manner. Intense research efforts require a
synergistic approach with experimental and mathematical
disciplines. From the experimental research a better-defined
problem and validation is essential. From mathematic
discipline, solid guidance must be established to perform
systematic numerical investigations.

Turbulence Model

Understanding turbulence phenomena is one of the few
scientific frontiers of aerodynamic research. Numerous defini-
tions of turbulence have been given, but the characteristics of
the turbulence pertaining to aerodynamics can be summarized
as follows: Turbulence is a random, continuum, and strictly
three-dimensional phenomenon. Turbulence is a highly
dissipative and diffusive process which, most importantly, is a
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property of the flow at high Reynolds number but not the flow
medium. In a field of fluctuating flow, many length and
velocity scales coexist.?® The smallest scale of motion is
governed by the value of molecular viscosity through the dis-
sipative process. These fine scales are commonly referred to
as the Kolmogrov microscales or the inner scales.??’ In order
to resolve the smallest eddy size, the number of nodes of a
numerical analysis reaches an astronomical value.? In
aerodynamics, turbulence is always associated with a solid
boundary and confined closely to the wake or jet region. This
region usually is very limited in dimension, but its influence on
the evaluation of aerodynamic force and moment is profound.
However, based upon our understanding of the dissipative
process of turbulence, the large-scale motion contains most of
the turbulent energy and performs the momentum transport.
In applications, the question of how fine a scale of motion
needs to be resolved for a given problem probably has to await
research activities in large-scale eddy simulation,3-248-250
There is no contradicting the fact that the Navier-Stokes
equations contain the necessary information for turbulence
and even the laminar-turbulent transition. Even though we
have no direct and positive result to demonstrate this fact,
enough outstanding research efforts offer promise. There is a
gap between. scientific understanding and practical applica-
tions. However, significant efforts were made to bridge the
gap by the use of the transport equations. Recent works by
Bradshaw et al.,?®® Reynolds,?8! and Marvin?®? have elegantly
summarized these efforts and hence will not be repeated here.

The mean turbulent field closure models are the result of an
approximation in describing the generation tensor, pressure-
strain redistribution tensor, and the dissipative tensor of the
turbulent transport equations. Frequently a differential equa-
tion for length scale is also incorporated. The detailed ap-
proaches are clearly beyond the scope of the present effort. All
these higher-order closure models seems to yield a slightly bet-
ter prediction than the algebraic approximation for a certain
class of problems.!91-194.282 Since turbulence is the property of
a particular flowfield, it would be unrealistic to expect that
there is a universal turbulence model with a fixed set of
universal constants. Finally, in spite of sophistication in the
turbulence model for the Reynolds stress, the turbulent heat
flux is simply evaluated by a constant value of the turbulent
Prandtl number. Therefore, it would not be surprising if most
three-dimensional ‘Navier-Stokes calculations adopted
algebraic turbulence models.7-283

The algebraic turbulence model, in theory, has a very
limited range of validity and is, at best, a crude description of
turbulence. However, in engineering applications, the simple
flux-gradient concept exceeds expectation. The degree of suc-
cess in practical applications is primarily due to the dissipative
characteristics of turbulence. It is very forgiving. The
algebraic turbulence model may provide a means of capturing
the key and global features of a flowfield. However, it is not
reliable in yielding fine details of secondary features.
Therefore, if the secondary feature is the basic mechanism in a
chain of events, failure is to be anticipated. In general, these
conditions prevail in flows of high extra-strain rate, lacking a
dominant axis of strain, and instability enhanced by viscous
effects. Specific examples are catastrophic flow separation,
near wake, flow associated with extremely high angles of at-
tack, shear driven internal peripheral flow, and a class of self-
sustained internal oscillatory flows. However, these dif-
ficulties may not be uniquely limited to turbulent simulations
by the algebraic model. :

It is obvious that turbulence modeling will remain in-
definitely as a critical issue to be resolved. Realizing the fun-
damental limitation, a proper perspective seems to suggest
that concentrated efforts should be put into a class of prob-
lems sharing common characteristics. The side-by-side ap-
proach with experiment will generate a solid base for a directly
usable result for engineering applications. The need is urgent.
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Grid Generation and Data Structure

For very large-scale data processing the mutual dependence
between grid generation and data structure becomes increas-
ingly important for efficient operation,!14273:2% particularly if
the concept of multicomputational domains is to be im-
plemented or the data accession has a particular bias. It is
common in three-dimensional calculations for the portion of
computing resources consumed in transferring data between
units to equal the computing resource required to execute the
arithmetic operations. Once external memory is used for
storage, the resources required to ship data can be overwhelm-
ing.' For an efficient numerical simulation, a carefully con-
structed data structure designed specifically for the numerical
procedure and computer architecture is critical.

The appropriate selection of an optimal coordinate system
for a given problem is paramount. It is not unheard of for the
success or failure of a solution to hinge on the first step of the
numerical procedure.’®'% The general criterion for a suitable
grid system is usually vague and is part of the preparatory
work of a numerical simulation, allowing a lot of imagination
and creativity. Therefore, it always suffers from lack of stan-
dardization. Unfortunately this is the first requirement of a
truly objective evaluation of the soundness of a grid system.
At present, grid generation gradually becomes one of the
major expenditures in terms of calendar time for a given
numerical simulation.

In general, current technology in grid generation can be
classified into two major groups according to the basic ap-
proaches to this problem. On the one hand, grid generation
can be achieved by solving partial differential equations, but it
can also be developed by algebraic interpolation between
boundaries. An outstanding collection of works in numerical
grid generation was prepared by Thompson, !’ fittingly reflect-
ing his illuminative contribution in this area of research.2®
There is no substitute for studying the original works of each
author, but the relative merits of the groups of grid generation
can be summarized. The obvious advantage of grid generation
by conformal mapping?® and solutions of partial differential
equations'?428728 js that the resultant grid system is con-
tinuous and differentiable to the order of the differential
equation adopted. Since grid generation by solving the partial
differential equation is a field method, the degree of control is
governed by the nature of the differential equations. The or-
thogonal preference and the gradual grid-spacing stretching
rate are systematically obtainable with a minimum of user ef-
fort. For the algebraic interpolation procedures,?®%-2%0 the
values of the coordinates in the field are determined by inter-
polation formulas. Control of the transformed coordinate is
explicitly accomplished through stretching functions in the
formulation. The smoothness of a grid generated algebraically
is not always ensured for piecewise continuous contour, and
user effort may be more intensive than with field methods.
However, the algebraic procedure usually requires few com-
putational resources and is more amenable to the modular
construction of complex configurations.

Complex three-dimensional configurations present addi-
tional challenges for problem solving in two regards: 1) the
topological constraints imposed by the complicated shape and
multiconnected domains, and 2) the internal compatibility of a
grid system containing highly contrasting geometric
definitions.

Finally, in the area of grid generation, one perceives that the
fundamental tools are available for the designated task.
However, if the present trend persists, the grid-generation
phase of numerical simulation will occupy a major portion of
calendar time in problem solving. There is immense room for
innovative ideas, but some of the bench tools should be stan-
darized in order to form a common library.

Post Processing of Data and Data Display

Post processing of data and data display is the most
neglected problem areas in solving the Navier-Stokes equa-
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tions. In the research phase of development, a project is con-
sidered complete once validation of the solution is obtained by
comparing with experimental data, analytic results, or similar
numerical simulation. A vast amount of the information
generated was usually discarded after major points were
made. Storage and manipulation of the huge amount of data
became a serious problem. In the process of developing the
comparison, the data must first be extracted and then com-
pressed together in tabular form or in graphic display. For the
latter form of presentation, creativity and imagination were
required to achieve the clearest depiction. For this reason,
pockets of excellent graphic capability existed at different in-
stitutions with state-of-the-art graphics work stations.2?/.292 At
present, a wide spectrum of color graphics terminals is
gradually being made available in the interactive mode. The
color graphics display possesses value beyond aestheticism.
The pseudo color spectrum can reveal detailed flow structure
which traditional presentation has failed to disseminate. Color
graphics is an important new tool for presenting the computed
result and making it easier to understand.

The post processing of three-dimensional and time-
dependent problems severely taxes the data storage system.
This is particularly true for the time-dependent problem,
where time-contiguous data must be stored and then
manipulated to produce the desired result. In order to under-
stand the investigated phenomenon, a dynamic display of data
is necessary. By nature this is a multidisciplinary endeavor,
coordinating special skills required to achieve a visual end
product, thus making the synergistic effect more apparent.
The graphic representation of three-dimensional problems is
confronted by a fundamental limitation: The projection of a
three-dimensional image onto a plane frequently confuses
rather than clarifies the intended results. The remedy is
available in optical physics through holographic technology.
Currently this new optical display is relatively expensive for
routine use, but the progress in this research area is im-
pressive. Fortunately the requirement for computer graphics is
not a lonely voice in our technical effort.

In the application of the Navier-Stokes equations for air-
craft design, the final result needed is the aerodynamic force
and moment. For the experimental effort, the integrated in-
formation is readily available by the balancing instrumenta-
tion. In numerical simulations, additional effort is needed to
derive this information from the discretized field. This linkage
is provided by Cauchy’s theorem, F = 7i7. Where the shear ten-
sor contains the static pressure, the # is simply the outward
normal of the body. Again, the advantage of using boundary
conformal coordinates is apparent. The net aecrodynamic force
exerted on the configuration is obtainable using the area
integral.

Future Prospect

From our previous discussion, we have seen no inherent dif-
ficulties that would inhibit further development in solving the
Navier-Stokes equations efficiently and accurately. The rapid
progress of technical support in the form of high-speed com-
puting facilities and graphics system will accelerate the
technology transition from research to application. Most im-
portantly, over the short span of a decade and a half, the
number of researchers in this area has grown from a handful
to thousands. The objectives of applying the compressible,
three-dimensional Navier-Stokes equations to aircraft design
is clearly achievable. The projections provided by Chapman,?
Kutler,* and Korkegi®?® are scientifically sound and probably
conservative. We have seen problems solved that were judged
to be impossible just a short while ago. Historically the peril of
predicting the impossible is great.

The trend of technical needs seems to suggest a greater
challenge and risk in the area of interdisciplinary work. The
combination of fluid dynamics with structure, flight
dynamics, chemical kinetics, optical physics, and elec-
tromagnetic physics, to name a few, is predictable. The
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shorter-term promising technical opportunities can be iden-
tified from aircraft design requirements.?** They can be sin-
gled out easily as transonic drag prediction, vortical
flows,2>2% compressors,?”” deep-stalled subsonic airfoils,??
and the time-dependent problems.

One feels confident that within the next few years a full-
scale numerical simulation of aircraft will be realized. In the
next decade, computational aerodynamics will supplement the
test matrix of the designer’s data basis. Even with the silicon
technology in computer components, one fails to detect any
major stumbling blocks to provide a fully interactive design
system for aircraft and missile. Further, we will be in a posi-
tion to achieve the optimum for the design activities men-
tioned earlier. In the area of turbulence research, ad-
vancements in solution procedures and facilities will enable us
to take strides in understanding that has eluded us for more
than a century.
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